Application and comparison of Kalman filters for coastal ocean problems: An experiment with FVCOM
نویسندگان
چکیده
[1] Twin experiments were made to compare the reduced rank Kalman filter (RRKF), ensemble Kalman filter (EnKF), and ensemble square-root Kalman filter (EnSKF) for coastal ocean problems in three idealized regimes: a flat bottom circular shelf driven by tidal forcing at the open boundary; an linear slope continental shelf with river discharge; and a rectangular estuary with tidal flushing intertidal zones and freshwater discharge. The hydrodynamics model used in this study is the unstructured grid Finite-Volume Coastal Ocean Model (FVCOM). Comparison results show that the success of the data assimilation method depends on sampling location, assimilation methods (univariate or multivariate covariance approaches), and the nature of the dynamical system. In general, for these applications, EnKF and EnSKF work better than RRKF, especially for timedependent cases with large perturbations. In EnKF and EnSKF, multivariate covariance approaches should be used in assimilation to avoid the appearance of unrealistic numerical oscillations. Because the coastal ocean features multiscale dynamics in time and space, a case-by-case approach should be used to determine the most effective and most reliable data assimilation method for different dynamical systems.
منابع مشابه
Parallelization of the Fvcom Coastal Ocean Model
The Finite Volume Coastal Ocean Model (FVCOM) is a publicly available software package for simulation of ocean processes in coastal areas. The unstructured grid approach used in the model is highly advantageous for resolving dynamics in regions with complex shorelines such as estuaries, embayments, and archipelagos. A growing user community and a demand for large-scale, high resolution simulati...
متن کاملComparison of extended and ensemble based Kalman filters with low and high resolution primitive equation ocean models
Kalman filters are widely used for data assimilation into ocean models. The aim of this study is to discuss the relevance of these filters with high resolution ocean models. This was investigated through the comparison of two advanced Kalman filters: the singular evolutive extended Kalman (SEEK) filter and its ensemble-based variant, called SEIK filter. The two filters were implemented with the...
متن کاملEnhanced Predictions of Tides and Surges through Data Assimilation (TECHNICAL NOTE)
The regional waters in Singapore Strait are characterized by complex hydrodynamic phenomena as a result of the combined effect of three large water bodies viz. the South China Sea, the Andaman Sea, and the Java Sea. This leads to anomalies in water levels and generates residual currents. Numerical hydrodynamic models are generally used for predicting water levels in the ocean and seas. But thei...
متن کاملFixed-point FPGA Implementation of a Kalman Filter for Range and Velocity Estimation of Moving Targets
Tracking filters are extensively used within object tracking systems in order to provide consecutive smooth estimations of position and velocity of the object with minimum error. Namely, Kalman filter and its numerous variants are widely known as simple yet effective linear tracking filters in many diverse applications. In this paper, an effective method is proposed for designing and implementa...
متن کاملParallel filter algorithms for data assimilation in oceanography
A consistent systematic comparison of filter algorithms based on the Kalman filter and intended for data assimilation with high-dimensional nonlinear numerical models is presented. Considered are the Ensemble Kalman Filter (EnKF), the Singular Evolutive Extended Kalman (SEEK) filter, and the Singular Evolutive Interpolated (SEIK) filter. Within the two parts of this thesis, the filter algorithm...
متن کامل